Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

2-Bromo-1,3-bis(bromomethyl)benzene, with $Z^{\prime}=1.5$: wholemolecule disorder of one of the two independent molecules

Peter Kirsop, John M. D. Storey and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
Correspondence e-mail: w.harrison@abdn.ac.uk

Received 10 May 2006
Accepted 12 May 2006
Online 15 June 2006
The title compound, $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{Br}_{3}$, possesses normal geometrical parameters. There are two independent molecules; one shows whole-molecule disorder with respect to an inversion-symmetry-generated partner, while the other is undisordered. This results in the unusual situation of $Z^{\prime}=1.5$ and $Z=6$ for a monoclinic crystal system. The undisordered molecule interacts with its neighbours by way of $\pi-\pi$ stacking.

Comment

The title compound, (I), prepared earlier by Newcombe et al. (1977), was obtained during our ongoing studies to determine the philicity of aryl radicals by competitive cyclization reactions (Kirsop et al., 2004a,b,c,d).

(I)

There are two independent molecules of (I) (Fig. 1). Both appear to possess their expected geometrical parameters, allowing for the rather low bond precisions obtained in this study. The C1-containing species is unexceptional. With respect to the mean plane of the C1-C6 benzene ring, one of the side-arm terminal Br atoms points 'up' [the displacement of Br 2 is $1.790(12) \AA$] and one points 'down' [the displacement of Br 3 is -1.792 (12) \AA].

The most interesting feature of the structure is the wholemolecule disorder displayed by the C11-containing molecule. This arises from inversion symmetry at the point $\left(1, \frac{1}{2}, \frac{1}{2}\right)$ and symmetry-related locations. The resulting overlapped molecules (Fig. 2) are constrained by symmetry to have equal population parameters of 0.5 for all atoms in the molecule. As with the C 1 -containing molecule, the two side-arm terminal Br atoms are displaced in opposite senses with respect to the
mean plane of the $\mathrm{C} 11-\mathrm{C} 16$ benzene ring [with displacements for Br 12 and Br 13 of 1.825 (16) and -1.74 (3) Å, respectively]. This situation of one ordered and one disordered molecule results in the atypical situation of $Z^{\prime}=1.5$ and $Z=6$ for a monoclinic system.

As well as van der Waals forces, the crystal packing is influenced by $\pi-\pi$ stacking interactions involving the C1containing molecule (Fig. 3) generated by the c-glide symmetry operation. The $C g \cdots C g^{i}$ separation $[C g$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring; symmetry code: (i) $\left.x, \frac{3}{2}-y, \frac{1}{2}+x\right]$ is 3.755 (4) \AA and the $\mathrm{C} 1-\mathrm{C} 6 / \mathrm{C} 1^{\mathrm{i}}-\mathrm{C}^{\mathrm{i}}$ interplanar separation is 3.411 A. A PLATON (Spek, 2003) analysis of (I) revealed a slightly short $\mathrm{Br} 1 \cdots \mathrm{Br} 11^{\text {ii }}$ contact of 3.595 (2) \AA [symmetry code: (ii) $2-x, 1-y, 1-z$], some $0.1 \AA$ less than the van der Waals radius sum of $3.70 \AA$ (Spek, 2003). Such $\mathrm{Br} \cdots \mathrm{Br}$ contacts are quite common and their significance - specific attractive forces (Desiraju \& Parthasarathy, 1989) or packing contacts (Eriksson \& Hu, 2001) - has been debated.

The packing of (I) is shown in Fig. 4, indicating how the ordered and disordered molecules segregate into (010) sheets.

Figure 1
A view of (I), showing 50% probability displacement spheres and ellipsoids (H atoms are drawn as spheres of arbitrary radii).

Figure 2
A detail of (I), showing the whole-molecule disorder of the C11containing molecule (50% probability displacement spheres/ellipsoids; all H atoms have been omitted for clarity). Atoms with the suffix A are generated by the symmetry operation $(2-x, 1-y, 1-z)$.

Because the C11-containing molecules are almost perpendicular to, and are sandwiched between, the $\pi-\pi$ stacks of C1containing molecules, there can be no $\pi-\pi$ forces involving the former molecules [the dihedral angle between the C1-C6 and C11-C16 mean planes is $80.8(6)^{\circ}$].

Aside from very simple molecules and fragments, wholemolecule disorder (WMD) is not particularly common. A classic example is the 10π electron molecule azulene, $\mathrm{C}_{10} \mathrm{H}_{8}$, containing fused, planar, five- and seven-membered rings. After several conflicting studies it was concluded (Robertson et al., 1962) that azulene shows WMD with the $5 / 7$ and $7 / 5$ conformations overlapped at random. More recently, Ichharam \& Boeyens (2001) observed WMD in 2-(2-thienyl)-

Figure 3
A detail of (I), showing the $\pi-\pi$ stacking interaction involving the $\mathrm{C} 1-$ containing molecule. The molecules containing atoms $\operatorname{Br} 1 A$ and $\operatorname{Br} 1 B$ are generated by the symmetry operations $\left(x, \frac{3}{2}-y, \frac{1}{2}+z\right)$ and $\left(x, \frac{3}{2}-y, z-\frac{1}{2}\right)$, respectively.

Figure 4
The packing in (I), viewed down [001], with H atoms omitted.

1-(2-pyrazinyl)ethene and 2-(2-thienyl)-1-(2-quinoxalinyl)ethene. In both cases, the disordered components were related by pseudo-twofold axes. Cox \& Wardell (2003) found WMD in 4,4'-sulfonylbis[N-(4-nitrophenylmethylene)benzenamine], with no (pseudo)symmetry relating the two slightly displaced disorder components.

Experimental

2-Bromo-1,3-dimethylbenzene ($5.0 \mathrm{~g}, \quad 0.027 \mathrm{~mol}$), N-bromosuccinamide (NBS, $9.6 \mathrm{~g}, 0.054 \mathrm{~mol}$) and azobisisobutyronitrile (0.88 g , $0.0054 \mathrm{~mol})$ were added to chloroform (100 ml). The mixture was stirred at reflux under a nitrogen atmosphere for 12 h . After cooling, the mixture was filtered and the solvent was removed at reduced pressure to give a yellow solid. Thin-layer chromatography (hexane) showed 2-bromo-1,3-bis(bromomethyl)benzene as a sharp spot at $R_{\mathrm{F}}=0.21$. The NBS residues were removed by flash column chromatography ($20: 1$ hexane-ethyl acetate) and the solvent was removed. The product was washed with hexane, giving a white solid $(4.9 \mathrm{~g}, 53 \%)$. A sample was recrystallized from hot hexane-ethyl acetate (20:1) to give clear needles of (I) [m.p. 371-373 K, literature (Newcombe et al., 1977) 374-376 K]. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 4.64(4 \mathrm{H}$, $\left.s, 2 \times \mathrm{CH}_{2}\right), 7.28(1 \mathrm{H}, t, J=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.41(2 \mathrm{H}, d, J=8.1 \mathrm{~Hz}, 2 \times$ $\mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 33.8,126.6,128.0,131.3,138.5$.

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{Br}_{3}$
$M_{r}=342.87$
Monoclinic, $P 2_{1} / c$
$a=9.1114$ (4) A
$b=22.6016$ (10) \AA
$c=7.5004$ (3) A
$\beta=111.971$ (3) ${ }^{\circ}$
$V=1432.40(11) \AA^{3}$

Data collection

Nonius KappaCCD diffractometer ω and φ scans
Absorption correction: multi-scan (SORTAV; Blessing, 1995)
$T_{\text {min }}=0.049, T_{\text {max }}=0.940$
(expected range $=0.046-0.882)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.084$
$w R\left(F^{2}\right)=0.253$
$S=1.01$
3266 reflections
146 parameters
$Z=6$
$D_{x}=2.385 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation $\mu=12.61 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Blade, colourless $0.60 \times 0.10 \times 0.01 \mathrm{~mm}$

14563 measured reflections 3266 independent reflections 2406 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.099$ $\theta_{\text {max }}=27.6^{\circ}$

$$
\begin{aligned}
& \text { H-atom parameters constrained } \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1847 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.89 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-2.79 \mathrm{e}^{-3}
\end{aligned}
$$

The C1-containing molecule was located and refined straightforwardly. The C11-containing molecule evidently showed massive disorder. By careful analysis of difference maps, the disorder could be resolved into two overlapped symmetry-related molecules of (I) (as described in the Comment). The C atoms of the disordered molecule were refined isotropically. All H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.95-0.99 \AA)$ and refined as riding, with $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}(\mathrm{C})$. The largest difference peak is $1.04 \AA$ from atom Br 2 and the deepest difference hole is $0.85 \AA$ from the same atom. Attempts to model the crystal in lower-symmetry space groups were not successful.

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO (Otwinowski \& Minor, 1997), SCALEPACK and SORTAV

organic compounds

(Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the EPSRC UK National Crystallography Service for the data collection.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK3024). Services for accessing these data are described at the back of the journal.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Cox, P. J. \& Wardell, J. L. (2003). Acta Cryst. C59, o706-o708.
Desiraju, G. R. \& Parthasarathy, R. (1989). J. Am. Chem. Soc. 111, 8725-8726.

Eriksson, L. \& Hu, J. (2001). Acta Cryst. E57, o930-o932.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Ichharam, V. \& Boeyens, J. C. A. (2001). Cryst. Eng. 4, 171-178.
Kirsop, P., Storey, J. M. D. \& Harrison, W. T. A. (2004a). Acta Cryst. C60, o353-o355.
Kirsop, P., Storey, J. M. D. \& Harrison, W. T. A. (2004b). Acta Cryst. E60, o222-o224.
Kirsop, P., Storey, J. M. D. \& Harrison, W. T. A. (2004c). Acta Cryst. E60, o1147-o1148.
Kirsop, P., Storey, J. M. D. \& Harrison, W. T. A. (2004d). Acta Cryst. E60, o1636-o1638.
Newcombe, M., Moore, S. S. \& Cram, D. J. (1977). J. Am. Chem. Soc. 99, $6405-$ 6410.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Robertson, J. M., Shearer, H. M. M., Sim, G. A. \& Watson, D. G. (1962). Acta Cryst. 15, 1-8.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

